A novel approach to neuro-fuzzy classification
نویسندگان
چکیده
A new model for neuro-fuzzy (NF) classification systems is proposed. The motivation is to utilize the feature-wise degree of belonging of patterns to all classes that are obtained through a fuzzification process. A fuzzification process generates a membership matrix having total number of elements equal to the product of the number of features and classes present in the data set. These matrix elements are the input to neural networks. The effectiveness of the proposed model is established with four benchmark data sets (completely labeled) and two remote sensing images (partially labeled). Different performance measures such as misclassification, classification accuracy and kappa index of agreement for completely labeled data sets, and beta index of homogeneity and Davies-Bouldin (DB) index of compactness for remotely sensed images are used for quantitative analysis of results. All these measures supported the superiority of the proposed NF classification model. The proposed model learns well even with a lower percentage of training data that makes the system fast.
منابع مشابه
Adaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملA Soft Computing Genetic - Neuro fuzzy Approach for Data Mining and Its Application to Medical Diagnosis Kavita Rawat , Kavita Burse
409 Abstract— A novel way to enhance the performance of a model that combines genetic algorithms and neuro fuzzy logic for feature selection and classification is proposed. This research work involves designing a framework that incorporates genetic algorithm with neuro fuzzy for feature selection and classification on the training dataset. It aims for reducing several medical errors and provide...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملA Versatile Adaptive Neuro - Fuzzy Inference System ( VANFIS ) for Flexible Object Classifier
A mixed mode neuro-fuzzy classifier named Versatile Adaptive Neuro-Fuzzy Inference System(VANFIS) is presented with versatile structure for different classification problems. The versatile structure which is designed for flexible classification problems is adjustable depending on the number and type of input vectors. Using proposed learning algorithm that evaluates degree of saturation state, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2009